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REPORT No. 1.

PART 1.

EXPERIMENTAL ANALYSIS OF INHERENT LONGITUDINAL
. STABILITY FOR A TYPICAL BIPLANE.

By Jerome C. HUNSAKER.

ArTIOLE 1.
INTRODUCTION. .

A model of span 18 inches, representingha. ical mili tractor
biplane, was tested in the wind tunnel of the Massachusetts itute
of Technology. The lift, drift, and pitching moment were measured
for a series of angles of incidence corres onding to the maximum
possible changes of flight attitude. Onlgr the discussion of sym-
metrical or longitudinal changes is given here. A report on the
lateral stability of the same model is reservéd for a later date. From
the observed rate of variation of the forces and gitchjng moment, it
was possible to calculate the ‘‘derivatives’” needed in the complete
theory of longitudinal stebility in still air. The damping of the
pitching oscillation was also determined experimentally. . .

The method followed is that of L. Bairstow in his extension of
Bryan’s theory. Notation also follows Bairstow. The value of
Routh’s discriminant, which Bryan has shown to be a measure of
dynamicsl longitudinal stability, has been calculated for six speeds,
ranging from the maximum to the minimum possible speeds for the
aeroplane type selected. The princ]iEal foint of interest brought
out 1n this connection is that stability falls off rapidly as speed
decreases’ or angle of attack increases, and that while aeroplane
appears t0 be very stdble at high speeds, it is frankly unstable, at
speeds below 47 miles per hour, ‘ . o

This instgbility at low speeds takes the form of an pscillation in
pitch combined with changing in forward .speed and & rising -and
ginking of the whole aeroplane, which, therefore, follows q,n,undurﬁa,tory
flight path. =The period of the undulation 1s about 12 seconds, and
the amplitude doubles itself in less than 20 seconds. Obviously, the
pilot can not safely abandon his controls at slow speed.

The importance of this demonstrated instability at low speeds
should be appreciated in view of recent accidents with military.
aeroplanes when operated at slow speeds. - '

Tﬁ)e entire investigation of inherent longitudinal stability was pre-
liminary: to the discussion of the effect of wind . ' Naturally, it
was first necessary to find a stable aeroplane and to obtain some idea
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26 AERONAUTICS.

of the ‘¢ 7 of stability. It now appears that a typical aeroplane -

is inherently stable in the sense defined at high speeds only. The
effect of gusts on the uncontrolled aeroplane wﬂ],l therefore, be
investigated only for the high-se%eed condition. At low speeds the
aeroplane can not be left to itself in still air. Consequently, a dis-
cussion of its certain destruction if abandoned in gusty air appears
unprofitable.

ArTIOLE 2.

. MODEL AND PROTOTYPE. -
The e of aeroplane 'selected is a high-speed military biplane
tractor Eown as C’ﬁmss JN2. Shop lans‘?)l%ethjs aerc;‘;fanepwere
kindly furnished by the Curtiss Aeroplane Co., Buffalo, N. Y., to

whom acknowledgment must be made for much valuable assistance,
includi tll%e mﬁmental determination of moments of inertia, ete.,

by Dr. . m of that company.

The principal dimensions of the aeroplane were assumed as follows:
Weight full 108d. cceeeaaae e eriaeeiiiiecieieaaen pounds.. 1,800
Brake hoT8EDOWET . ceaeceueeneineacncacacnacanannn horsepower.. 110
Maximum speed for calculations. ....c..c.c.o...... miles per hour.. . 79
lTioi%mm@eed(fordeCﬂBﬁomms ----------------------- dfO---- 3§3“7)

ing area (including ailerons)...cceceeeace... square feet. .
Area g(]ﬁ 7 P do.... 23.0
Area horizontal rudder..cecececececccerancacciocnceanens do.... 19.0
Area Zfertlca.l TUQdEr e ceeeeieteeaoiarccarcnancnanrcssoncans dio. .- 376.3
WINEB.ceeecececccracconcocnscccancosssencasoscnssan eof,
(S:ggd of wingg........... eeeececserccssnscsscassccsncacnn do.... 5.3
Gap between WIDgH. c...virenieenricecnrecrccncnscacans 0... 5.3
Length of BOdy e uenneeevmiiiaieetncacecreacsaccacns do 26.0

The model was made geometrically similar to its prototype and
one twenty-fourth scale. The general features are shown in the
drawi b(1)1f the mcidel. (Figs. % a,tlg c.) T]ell? modzl was an exach
copy of the aeroplane except for the propeller and wing wiring
W '{h features wgre omittm{ Also wing struts were ma%e round
instead of ‘‘stream-line” in section. Since it is well known that
the resistance of a series of similar aeroplanes varies somewhat less
rapidly than the square of the speed and square of a linear dimen-
sion, due to skin friction, it is believed that the prediction of the
resistance of the full size aeroplane from the observed model resistance
will still be & fair estimate in spite of omissions on the model. .

For simplicity, the model was made with the trailing ailerons of
wing flaps integral with the wings. This somewhat increases the
effective supporting area. Also the fixed tail and elevator were
made in one, corresponding to the elevator held fast in its neutral
position. These points are made clear on the drawings of the model.

ArTIOLE 3.

GENERAL WIND TUNNEL PROCEDURE.

The morlel was tested in the 4-foot wind tunnel at a velocity of 30
miles per hour. The wind tunnel and aerodynamical balance are
duplicates of the installation of the National Physical Laboratory, Ted-
dington, England, and reference should be made to the Technical
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30 AERONATUTIOS.

Report of the Advisory Committee for Aeronautics, London, 1912-13,
for detail description and methods of operation.

In general, it may be stated that the wind tunnel provides a wind
constant in velocity within 1 per cent, which velocity is further con-
stant across the working cross section of the tunnel within 1} per
cent. Velocity is measured by a suction plate calibrated against a
standard Pitot tube with & precision of one-half per cent. The
model is mounted on the balance in various attitudes of pitch or yaw,
and in such positions are measured the three forces and three couples
produced by the wind along and about three mutually perpendicular
axes in space. From a knowled.%;a of the variation of these forces and
couples with change of attitude, the so-called ‘““resistance derivatives”
of Bryan’s? theory of dynamical stability may be computed.

The theory of stability also requires the determination of the damp-
ing of oscillations about the center of %ra.vity of the aeroplane. A
special oscillating apparatus was built for these tests which will be

escribed below. By oscillating the model in the wind and observing
the decrement of am;p]itude with time, it was possible to estimate the
“rotary derivatives.’ .
AgrTioLE 4.
LONGITUDINAL TESTS.

The model was mounted on the balance with its wings in a vertical
plane by means of a vertical rod driven into the body at the point
ghown on figure 1. By swinging the model about the vertical axis
passing through the spindle, the angle of wind to the wing chord wes
varied from +20° to —8°. At each attitude the force across the wind
or “Lift,”’ force down wind or “Drift,” and the pitching moment
about the spindle were measured. The signs were taken so that
an actual lift, actual head resistance, and a stalling moment are posi-
tive. The wind velocity was 30 miles per hour of standard dry air
at 15° C. and 776 mm. Hg. The experimental points are shown on
ﬁim'e 2, where forces are In pounds and moments in inch-pounds.
The precision of measurement is within 1 per cent.

For a given attitude, the resultant force on the model in pounds
at 30 miles per hour is B=+/T?+D?. This resultant makes an

angle with the wind direction given by a¢=tan—! % The force B

is observed to have a pitching moment M about the spindle axis.
It may then be assumed to be situated so that the perpendicular

from this axis to R is given by a;=%—[- The vector R is thus deter-

mined in magnitude, direction, and line of application. The resultant
force vectors R are shown on figure 1b to a scale 1 inch equals 0.2
pound. The vector E is purely an aligebraic substitution for the
complicated system of forces and couples acting on the aeroplane.
The vectors are drawn relative to the aeroplane.

The center of gravity was assumed to lie as shown near the inter-
section of the propeller axis with the resultant force vector for 4°.
At this attitude, then, the pitching moment should be nearly zero.

1 @, H. Bryan, Stability in Aviation.
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' AERONATUTIOS, 31

The c. g. location determined for the actual aeroplane after exten-
sive trial flights is almost identical.
It is seen that for angles smaller than 4°, R passes forward of the
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aeroplane is longitudinally stable in s static sense. It will be shown
below that it is not always dynamically stable.
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32 AERONAUTIOS,
ArTIOLE 5.
PERFOBRMANCE CURVES.

The lift and head resistance or “drift”’ of the full scale aeroplane
were assumed to be approximately given by the relation:

Force on model =( 30 )’
Force on aeroplane \24 V.
. FIGURE 3.
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when V is the flying speed of the aeroplane in miles per hour. The
above relation holds, of course, only for the same attitude of model
and aeroplane. The weight of the aeroplane, 1,800 pounds, must
equal the lift in flight. Hence:

V=-3—Q / 1800
24\ Lift on model.
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AERONAUTICS. 38

A series of speeds V was computed for a series of attitudes of the
aeroplane, and the aeroplane drift at each attitude was then com-
puted from.:

D full size=D model x 9% x(a%)’

In o 3 are given curves of drift, effective horsepower required,
angle of wing chord to wind and ratio weight to drift plotted on ¥V as
abscissae. For our calculations & maximum speed of 79 miles and a
minimum of 43.7 miles were selected corresponding to angles of wing
chord to wind of 1° and 15.5°, respectively.

The curve of E.H.P. on figure 3, indicates that 87 propeller horse-
power is necessary for a speed of 79 miles. If the propeller has an
efficiency of 80 per cent, the motor must develop at least 110 brake
horsepower. e ori%nal designs contemplated as maximum s%ied
of about 80 miles per hour for a 120 brake horsepower motor, which
appears very reasonable. As actually built this e was given a
rated 90 horsepower motor. Assuming 70 E.H.P. delivered to the
propeller a speed of 73 miles per hour is indicated by our curves. It
is reported that the speed of this asroplane was actually 73 miles per

our.’
ARTIOLE 6.

CHOICE OF AXES—NOTATION—UNITS.

Axes for reference are assumed fixed in the aeroplane and movi
with it in space. The origin is at the center of gravity. For steady
horizontal flight at a given attitude the axis of Z is vertical, the axis
of X Horizontal and directed to the rear in the plane of symmetry,
and the axis of Y is horizontal and directed toward the left-wing tip.
Forces along these axes are denoted by X, Y, Z and are expressed In

ounds per unit mass. Moments are L, M, N and are given in pounds-
eet per unit mass.!

Angles of roll, pitch and yaw from the normsl flying attitude are
denoted by ¢, 6 and . ar velocities of roll, pitch and yaw are
p’eil’ 7 in radius per second. e signs of moments, 81)1%199 and
velocity are positive considered in the directions XY, YZ or ZX.

Moments of inertia referred to axes X, Y, Z are denoted by
mE*,, mE?s, mE% where m is the mass of the aeroplane and K.,
K, Ko corresponding radii of gyration.

ARTIOLE 7.
EQUILIBRIUM CONDITIONS.

In normal horizontal flight in still air a state of equilibrium is
sssumed such that the power available maintains the aeroplane at
such & speed that the weight is just sustained. Since the Iift of an
seroplane wing is also & function of its attitude or alzﬁle of attack,
it is further assumed that the attitude is proper for the speed. In

1 Unit mass is the slug equal to 32.17 pounds welght.
25302°—S8. Doc, 268, 64-1——3



34 AZRONAUTICS.

normal horizontel flight the axis of X is parallel to the a?parent wind
direction and is hence horizontal. Let 8 be the angle of pitch of the
aeroplane away from.its normal attifude. Then no & 6 is zero.
Likewise if the seroplane is in equilibrium in its flight, the angular
velocity of pitch is zero and also the pitching moment, M.

At high speed, for example 79 miles, the axis of X is horizontel and
makes an angle of 1° with the W’JI§ chord. At low speed, new axes
are chosen such that the axis of X is still horizontal but makes an
angle of 15.5° with the wing chord. The axes are fixed by the
equilibrium conditions for flight and differ for each normal flying
attitude. Oscillations about the normal flight path when the motion
is disturbed are referred to the above defined axes which are assumed
fixed in the aeroplane and moving with it in space.

The pitching moment curve ogserved for the model shows zero
moment for an angle of wing,chord of 4.5° and & divi.!]ljg moment at
larger es. For slow flight, it is assumed that the pilot by proper
setting of his horizontal rudder imgresses an equal stalling moment

on the machine so that the net pitching moment is zero. o offect
is to move the pitching moment curve parallel to itself by the alge-
. braic addition of a s moment so that its ordinate has zero value
for the desired flight attitude.
AxrTIOLE 8.
4 TRANSFORMATION OF AXES.,

It is convenient to measure in the wind tunnel the lift and drift
about axes always vertical and horizontal in space. For the oscilla-
tions of the aeroplane it i8 convanient to consider the forces referred
to axes fixed in the aeroplane as described above. The transforma-
tion is effected in the usual way by means of the formuls:

m Z'=Lcos ©+Dgin 0,
m X’'=D cos ©—L sin 9,

where © is the angle of pitch of the aeroplane away from its normal

attitude, considered positive for sta]lm%' a.n.%es. ere L and D are

1ift and drift on the model in pounds, and m X’ and m Z’ correspond-

in;g forces in pounds along the axes X and Z. The model forces

Z’, X' are converted to Z, X, full size, by multiplllying by the

square of the speed and linear dimension ratios. The following tables
out the required transformation. ) .

e pitching moment M is independent of the longitudinal shift of
axes and varies onlyas the squareof the speed. Curves of X,Z and &
for the different flight attitudes are plotted on figures 4, 5, 6, 7, 8,
and 9. The transformation of the moment about the spindle to the
Co; onding moment about the c. g. of the full-size aeroplane is
given below.

w7

e Y T TR ST e T T T T e e s e

e D m e © S i e o e T oy
DN ~ PR - [ T S Tl PN T
S <N . e P et v



35

S

o 0
I~ HHORNO

.......

79 miles, m=565.9 slugs.

AERONAUTIOS.
i=7°, 7==51.8 miles.

i=1°, V-

JT2RBLY BBRNR BENRY
Hiiiidfb.nl. 15183 S S S
BHEBONOO N A oo wea ey
mmm%wmu@ Sgsiss 888
I 0 oo 8 ﬁ ﬂ
53838888 | B T | Band8 | T | ax382
IO—.-Io..o-.. ~ 2 O..-.o 2 0...-
| | i
BeRtsses | o -~ | assee | - | 8892
S " e L] ) 1 =t =] =] ] A el et
+ A 1 1
TR 77T TTo8T
orawryE SERRE S9NSeR

R

e e




86

m

a=0.10 inches, c. g. above

AERONATUTIOS,

1==15.5°, V=43.7 miles.

1 <] L D zZ X
9.6 —6 1.24 0.196 26.4 7.1
13.5 —2 1.40 .330 30.6 8.25
15.5 0 1.48 .408 82.2 8.9
17.5 +2 1.49 .482 33.0 9.4
19.5 +4 1.49 . 561 33.4 10.0

CONVERSION OF PITOHING MOMENTS.

m M,=moment about spindle in inch pounds on model.
moment about c. g. in inch pounds on model.
b=3.04 inches, c. g. forward of spindle.

rxapindle.

Axisof X 3.5° to wing chord. R .
Af=pitching moment about c. g. full size, full speed, in pounds feet per unit mass.
mMeg=mM,~mZ’b—mX’a.
i=angle of wing chord to wind, degrees.
©=angle of axis of X to wind, degrees.
it {6 L | D |mz|nx|ma|min Y| | W S| W |SF
— 331 — 8| +0.130-+0.123{—0. 148} 4-0. 204{—0. 022} 9.17
- —-8|+. 10504 .068|  .112l4 .400 7.85
- -4+ It 293 12104105 6.654
+ 15| —af .50, .108] . .123) 1.65 437
28 —1f . -110] :ﬁ 1220 193 3.49
of . Jusl . J15| 2.21 132
41 +11 . J122f .81 .107] 248 0 0
e8| +2| .e10 .(is0| .01l .o08 271 0 56|— 8.49
7| +4] r09] .15 rip] o081 817 — .07 7.58
uj| +8| 37| .262f L4o| .05 3.8 — .40/—57.0| —245—20.2 |—187 |-17.9 |-17.5
159 | +12] 148 151 .18 4.00| — .60 —35.8/-30.8 |-23.0 [-28.8 [—23.2
10y +18) L49| .s61] Ls4| .33Y 8.95( — .76|—108.0] —46.6]......|....... —33.9 [-33,.2
ArTIOLE 9.
DERIVATIVES, LONGITUDINAL.

RESISTANCE

Notation follows Bairstow,* to whose paper reference should be
made for the detailed discussion of ‘“derivatives.” In the theory of
small oscillations, the aerodynamic forces X, Z,, and pitchi

moment,

M,, are eliminated by the conditions of equilibrium. In

disturbed motion, disturbances in normal flying speed and attitude

cause changes in the
Let U be the norma.

qluﬁnj:ities, X, Z, and M.

speed and u, w and ¢ small changes in

horizontel and vertical velocity components and engular velocity of
pitch. If the disturbance be small, %, w and ¢ are small with respect
to U. For example, the function

[

Xﬂf(U—l—’lb, w, Q)

may be expanded into the approximate form
XmXo-l-’lLXu-l"wxw'l'g Wq}

a linear function of the small quantities w, w, ¢. The coefficients
Xy, Xy, Xgare the so-called resistance derivatives of the theory of

1 Technical Report of the Advizory Committee for Aeromautics, Londen, 1912-13.
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38 AERONAUTIOCS,
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amall oscillations, and physically represent the slope of a curve of X
on a base u, w, or ¢.

Similarly
Z=Z,+uZy+ w0l +¢Z,
M=, u Myt M+ (M,

From the conditions of equilibrium, X, is balanced by the pro-
peller thrust, Z, by the pull of §a ity or Z = a.nd
Balrstow as shown that and Z, ma, be neglected
X’ is the rate of cha.u§e of X with cha.nge in forwa.rd speed. But
since X is a function of forward speed squared we may write:

AX, 2X,
sTTAT T U

and

27,
Ze=
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AFERONAUTICS, 41

These coefficients may be obtained directly by calculation since
Xoe= pors t’ and Z,=g. For example, at 79 miles per hour, U=
—115.5 fest per second and Z,=32.2. Then

_2X32.2
—115.5

Z, — 557

-Also at 1595, U= —63.8 feet per second and

_2X10 _
—63.8

The derivatives X,,, Z,,, M, represent the effect of a vertical
component of velocity. From the wellknown method of velocity
composition, the vertical velocity w acts with the horizontal velocity
U to cause the apparent wind to have an inclination to the horizontal
of tan7 7+ This inclination is given to the model in the wind
tunnel, and X, Z, and M measured for various pitch angles.

But A9=tan 7=57.3 7 when A0 is & small angle in degrees.

X, — 278

. AX 573AX
S Xo=" =28

A—A‘% is the slope of & curve of X on pitch angle as base. For example,

from figure 4, H=%ﬁ5 and
573 —.85
Xw=T5.5'_2_—+0'162

Similar formulas are used to comgute Zy a.ndm It may be noted
that the method assumes that for small oscillations, hence small
cha.nﬁle:l 0, the tangent may be substituted for the actual curve.
The himit of validity is obviously the range of pitch angle over which
the tangent to the curve is not greatly changed. This range is usually
about 4 to 8 d .

The values of the resistance derivatives calculated in this manner
will be found tebulated later.

ArTIOLE 10.
DAMPING.
The damping of pitching about the c. g. is represented by the rotary
derivative M,. For an angular velocity g—f=g, 8 damping moment
q M, is exerted on the aeroplane.

To messure this aerodynamic dam%ing, the special oscillating appa- /

ratus was designed which is shown by the photograph of figure 10.
The model is mounted on a massive bracket Whic%r pl:vots about the

- - v e - g . N
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two points shown. Fore-and-aft arms carry counterweights which
are adjusted to give a reasonable natural Eﬁfiod. The spiral BPri’FEB
bear in notches on the arms by means of knife-edged shackles. e
springs insure that the motion shall be oscillatory. The assumed
c. g. location of the aeroplane model is ed to be on the axis of
rotation. The actual center of gravity of the apparatus is not
considered. ' .

Friction is kept small by careful design of the steel pivots, which
are hardened steel points bearing in tool steel cones. The spri.ng
knife edges are glass hard. It was found that a convenient perio
is about one- second. In still air the apparatus will rock more
than 300 times before the amptitude is diminished by friction to
one-ninth of the initial displacement.

The moment of inertia of the entire oscillating mass was calcu-
iq.ted and then checked by an independent experimental determina-
ion.

Lot:

I=moment of inertia of all oscillating parts in slug foot-

units,
m’=mass of all oscillating parts in slugs.
=moment of air forces on model at rest.

,=moment of springs at rest.
K6 =additional moment of springs when deflected.

c=c. g. of entire apparatus above pivot, feet.
dg=angle of pitch from normal attitude in radians.

#o-gy=damping moment due to friction.
uw%=-damping moment due to wind on apparatus.

um%a =damping moment due to wind on model.
cm’f=static moment due to gravity.

The equation of motion thern is:
224 (gt bt ) G (E—om'0t M, M=o
But M,= M,, by the initial condition of equilibrium. Let
#= i+ pp+ g then I% +n%i—+ (.K.—crn’)0=o

The solution of this equation is well known to be:

6= C’e:f;‘ coa-{L‘/(K—cm') 71-—5,+ oc}-

where ¢ and « are arbitrary constants. If time be counted when
the amplitude of swing is & maximum then cos{—}=1, and §=4,,
the initial displacement. Also if the number of beats be counted by

e e e o ——— -, FE e
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observing the times for sucoeeding maxima, a plot of amplitude on
time will have for its equation the simple i:'01"1:n:P P

—ut
0=0,e3r . -

The coefficient p is the logarithmic decrement of the oscillation
and must be numerically positive to insure that the oscillation dies
out with time.

The ag aratus was fitted with a small reflecting prism by which a
pencil of light was deflected toward a ground glass plate set in the
roof of the tunnel. Nine lines spaced 0.2 inch were ruled on this
plate. With the model at rest the beam of light was brought to a
sharp focus on the line marked zero. By means of a trigger the
observer started an oscillation of the model, and the spot of light was
observed to oscillate across the scale. The time, ¢, was observed in
which an oscillation was demped from an amplitude of 9 to an ampli-
tude of 1, for example.

Then: Zog,%’n:-zi"]t=log¢9, and knowing I and ¢, u is calculated.

Preliminary tests showed that the same value of x was obtained
whether the timing stopped at 6=5, 4, 3, 2, or 1.

Oscillation tests were made at five wind velocities varying from
5 to 35 miles per hour. The coefficient 4 appeared to vary approxi-
mately as the first power of the velocity.

Similar teste were made with the model for no wind to determine
ko, Which may be said to be due almost wholly to friction and ve
zh ghtly to t,]{e damping of apparatus and model moving throug

e air.

Likewise p, was obfained by oscillating the apparatus without
model in winds from 5 to 35 miles per hour.

The coefficient u,, has the dimensions* pltV, yhere p is density of
air,1 a linear dimension, and V the velocity of thewind. To convert
im to M, for the full-size machine at full speed, multiply by the fourth
power of 24, the scale, and by the ratio of full speed to model speed.

The numerical results of tests of the pitching oscillation follow.
" Note that the da.m%iﬁ of the pitching falls off for low speeds. This

cone%‘igmtes to the difficulty of providing sufficient stability at low
eeds.
SPIn the tables following, the number of beats, 7, is recorded as a
general check and is ot used. Recorded values of n and ¢ are the
means of three or fiveseparate observations.

0

{Batrstow, loo. olt., p. 176.
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PITOHING OSOILLATION TESTS.
I model and apparatus=0. 04195
= . 0368

T apparatus
Apparatus.

Wind velocity, miles.... 0 4.7 214 85

n beats counted........ 850 253 210 186
tBeconds.....oooao.... 168 120 100 90
Boosansaoaasnnancannnns .00088 .00136  .00162  .00180 ol val
pp (less Zero)........... 0 .00039 .00086 .0 s mdbdm -

Apparatus and model with wing chord 1° to wind.

Vmiles. .o.coviemunaaa.... 0 9.5 147 218 25 - 80 87.38
nbeats. ... ... 800 20 56 40 36 32 27
teeconds .. ... ... 160 46 285 20 17.5 16 13.5
BEIOES. it .00115 .00410 .00646 .0092 .0105 .0115 .0137
po friction. ... . ._....._.. . 00086 .00096 .00096 .0010 .0010 .0010 .0010
s apparatus.......o........ 0 .00035 .00040 .0006 .0007 .0009 .0011
smneb... ... ..., .00019 .00284 .0054 .0076 .0088 .0086 .0117

But py= —m 3, when reduced to full size and 79 miles per hour
.and mass of 55.9 slugs.

o My= —.0096 X (24)* X (79/30) X 1/55.9 = —150.0

or for
U= —114 foot-seconds, My=1.32 U
Apparatus and model with wing chord 15.6° to wind.
| 2R 9.1 147 21 4 25 30 37.5
(. 75 50 35 30 25 19
AR 38.5 25.0 17.5 15 18 9
BELOSSe e eieeaceaecaans . 0048 . 0074 . 0106 . 0123 . 0142 . 0205
TP« 1-) S . 0035 . 0060 . 0089 . 0106 . 0123 . 0184
My= —.0123 X (24)*X (43.7/30) X 1/55.9= —108

of

M,=1.66 U where Uis —84 foot-seconds, or 43.7 miles.

The computed values of p,, the model damping coefficient, are
lotted on e 11. It appears that p, is approximately & linear
otion of the velacity, as would be expected, and the conversion
to full scale, full speed, is made as indicated above.
The damping coefficient is not greatly different for different atti-
tudes, and the following values are obtained by interpolation:

* Angle of
wing chord
to wind. V. 7. 1[8

+1° 79.0 -115. 5 1.30 U=-150
7° 5L8 — 75.8 *L49Um=—113
10° 47.0 — 688 155 0=-108
12° 45.2 — 66.2 159 U=-108
14° 44.2 — 64.8 1.63 U=-108
16.5° . 43.7 — 64.0 1.66 U=~106
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ArTIiOLE 11.
RADIUS OF GYRATION.

For the radii of gyration of the fully loaded aeroplane we are in-
debted to Dr. A. K. Zehm. The actual aeroplane, complete with
gasoline, water, pilof, passenger, and other weights in place, was
suspended from & beam by a chain. The center of gravity was first
located by an inclining method. The machine was then made to
oscillate in pitch about the point of attachment of the upper end of
the chain. %&ght guys were run to tail and wing tips to insure that
the chain and aeroplane moved as & rigid body.

Let the distance from center of gravity to point of ension. be
denoted by %, p the natural period of oscillation in seconds, K the
radius of gyration in feet about the Y~ axis or axis of pitch, then

h
B2 —(Ls) v-¥
By observation A=12.2 feet, p=60/14 seconds.
B =34, K5=5.8 feet.!

ArTioL®E 12.
ROUTH’S DISCRIMINANT.

Bryan 2 has shown that the character of the longitudinal motion

of an aeroplane may be investigated with reference to the roots of
a biquadratic equation of the form:

AN4+BN 4+ ON+ DA+ E=0

The equations of motion may be considered of the form 0= Ke™
where K is some constant. For stability the ]gna.nt'l A must Be
negative if real, or have its real part negative if complex, in order
that the amplitude of the motion will diminish with time.

The condition that the real roots and real parts of imaginary roots
of a biquadratic equation with constant coeflicients shall be negative
is that the coefficients A, B, 0, D, E shall each be positive as well
as the $antity BOD—-ADP—-BE., The latter is commonly known
as Routh’s 3 discriminant. '

The constant coefficients A, B, 0, D, E, are functions of the con-
stants of the aeroplane at the normel flyi attitude, i. e., the follow-
ing: Xy, Xu, Xy, Zu, Zuy Zgy My, My, My, U, end K>, These are
resistance and rotary derivatives, velocity, and radius of gyration,
For a given attitude and for small oscillations about that attitude,
it is considered that these quantities are constant. For simlp]icity
it is here assumed that normal flight takes place in a horizontal plane
and the inclination of the ﬂ%ht path and consequent components of
gravity in the axes of X and Z are eliminated. Also X, and Z, are

1 1t 13 of Interest to note that the radtus of gyration for rolling was estimated to be 6.2 fesf.
2 Stabfiity in Aviation.
3 Advanced Rigld Dynamics, E. J. Routh.

s
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neglected as unimportant and M,‘Ris zero by the conditions of equi-
* librium. For the computation of Routh’s discriminant we require to
know, then, only those quantities which have been so far determined,
and which are assembled below for the different cases investigated.

Formulsm for the coefficients 4, B, C, D, E are given by Bairstow
and are used here, but making ©, Xq, Zg, and zero. They are
copied in simpliﬁeii form for reference.

A=' KB’
B=— (My+ X, K5+ Z Es?)

Zw: 3] Xw
O=[if, g+ Fullet B 3

10

D %" ;zY'”’ u l
i, M, M,
E= —.(7-M-wzu
ArrioLs 13.

BAIRSTOW’S APPROXIMATE SOLUTION.

From consideration of the usual relative numerical values of the
coefficients of the biquddratic, Bairstow has shown that the equation

. may be factored to & first approximation and put into the following

form:

‘ ()\=+B/A)\+ 0’/A> <>3+[D/0—BFE] )\+%)=-O.

in which the first factor represents a very short oscillation, which
in most aeroplanes rapidly dies out and is of no importance. The
second factor reg)resents a relatively long oscillation involving an
undulatory flight path with changes in pitch, forward speed, and
altitude. The long oscillations should diminish in amplitude with
time, in which case the motion is stable and the aeroplane will return
to its original normal flight attitude if temporarily deviated there-
from by accidental cause. The motion is unstable if the long oscilla~
tion increases in amplitude with time. It will be shown that the
aeroplane under investigation is stable at high speeds and unstable
at very low speeds. It 1s believed that this 18 frue of all aeroplanes.

QOase TI.
1=incidence, wing chord to wind --1°.

Velocity V=79 miles. U==—115.6 foot-seconds.
m=>55.9 slugs, Kp?=34,

Xy—.128 Xp4.162 M, H174
Zu —.557 Zw —'3.95 "‘150

A=t 34

B=-{-289 .
C=--8841BCD—AD3— B3E=-}-18X10° stable.
D=-1115 .

B=4 381
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Short oscillation: A2-+4-8.5A424.5=0
A=—4.25-1-2.541
p=peﬁod=%=2.5 seconds.

t=time to damp 50 per cent.=g—'%=.16 second.

Long oscillation: A?-}-.125A--.0374=0
A=m—0 183 -

p=34.3 seconds, ¢=10.8 seconds.

The short oscillations are unimportant. The long oscillations are
easy and strongly damped. The aeroplane should be very steady

at this speed.
. Casp II.
1=7°, V=518 miles, U=—75.9 foot-seconds.
Xu—121  Xp+.018  M,+2.45
Zy—849  Zp—2.28 Mg—113
A=+ 840
B=1194.0
C=-467.0; BCD— AD*— B3E=-}-32X10° stable.
D=+ 643
E=-1 67.0
Short oscillation: A?-+5.724-15.9=0
\ A=—2.85-+-2.33¢
p=2.7 seconds

t =.24 second to damp 50 per cent.
Long oscillation: A--.078\+.143==0
A=—.039.37Ti

=16.7 seconds
=117.7 seconds to damp 50 per cent.

The period is shorter than at high speed and the damping less.
The aelg)plane should therefore be less comfortable.
Oase ITT.
i=10°, V=47 miles, U= —68.8 foot-seconds.

X,—161  Zy—938 My +2.50
X,—076  Zy,—1.46  3,—108

A=+ 34

B=+165

C=4-355 }BCD—(AD?*4-B2E)=8.8X10° stable.

D=+ 425

E=+ 75.3

+ Short oscillation: A3} 4.85M-110.44=0

A=—2.4214-2.12
p=2.96 seconds,

t= .28 second to damp 50 per cent.

Long oscillation: A%} .02IA4.212=0
A=—.011-1-.4601

p=13.71 seconds.
t =62.7 seconds to damp 50 per cent.

This oscillation is rapid and but slightly damped, and would

probably be uncomfortable. The stabilify is slight and wind gusts
or external disturbances, if recurrent, might cause trouble.

e e S T o e S e e £ () S e e e e % ST e e e
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Case IV.
1=12°, V=45.2 miles U=—686.2 foot-seconds.
Xu—180  Zu—.972 _31""’2 15

Xp—.236  Zyy—.736 106

A=+ 34

B=+4137.5b

C=+4243 BCD—AD3—B?E=~7X10° UNSTABLE.

D=+ 174 )

E=+ 672

Short oscillation: A4 4.047+7.14=0
A=—2.02-£1.75¢
»=8.59 seconds.

t = .342 second to damp 50 per cent.

Long oscillation: A3~ .985A==.276=0
A =048 4-.524¢

p=12.0 seconds.
t =16.0 seconds to double amplitude.

The machine is frankly unstable and the pilot dare not; release his
elevator control.

Case V.
1=x]14°, V=44.2 miles, U=—84.8 foot-seconds. '
Xy—.223  Zy—.908  M,+1.99
Xp—.182 ‘ Zyp— 5538 M, —106

N
C—+213 BOD—AD’—B’E=—3 7X10° TUNSTABLE,
D=-} 28

E=-} 63.6
Case VI.

1=15.5° V=43.7 miles, U=—68.8 foot-seconds.

Xu—216  Zy—10L 12,02
Xy—.202  Zge- ﬂ‘” —106

5=tk
=12268 |BCD—AD'—BE=—5X10° UnstaBrE.
—+ 242

Ry

Short oscillation: A*-} 4.08A4-6.65=0
A=—2.031 1.56¢

p=3.95 seconds, period.
t= 3459cond3todamp50percent. \
Long oscillation: A2} .071A4.201=0
A =4-.0358-4-.5411
25802°—S. Doc. 268, 64-1—4
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Real part of A is here positive, indicating an oscillation increasing
with time.

p:%=11.6 seconds.

.069 .
t =m—8=19.3 seconds to double amplitude. ‘

The motion is both rapid in period and rapidly increasing in am-
plitude. Indeed the amplitude 1s doubled in two swings. is aero-
plane, if left to itself, would be highly unstable.

ArTIOLE 14.
VARIATION OF LONGITUDINAL STABILITY WITH SPEED.

Preliminary to consideration of the action of gusts on an inherently
steble aeroglla.ne, it was desired to analyze the motion in still air of &
machine which could be called inherently stable longitudinally. It
has been found above that a ﬂt?pical aeroplane becomes less stable
at low speeds until real instability results. This result is somewhat
unexpected in view of the curves of pitching moment M, which in-
dicated static stability at all Enossfble attitudes up to and inoludinﬁ
horizontal flight at +15°.5. other words, M,, is positive for a
cases. The mstability comes about on account of the rapid rate of
increase of drift at large angles causing X,, to change sign, and on
account of the less rapid rate of increase of lift, causing Z,, to be-
i;ome smg]l at high angles of pitch. Furthermore, M, diminishes at

ow speed.

From the spesd power curves on figure 3, it appears that for angles
greater than 10°, we are on the part of the power curve which re-
quires more power to go slower, ‘‘region of reversed controls.” Thig
region is now found to be dynamically unsteble so that controlled
flight only is possible here. But with reversed controls this is
doubly dangerous.

The frequency of accidents at low speeds, following the recent
demand for & wide speed range, confirms this impression of the
danger of low speeds when approaching & critical angle and speed.
The critical a.m;l% for instability is clearly an angle less than the pos-
sible maximum for flight.

A fair measure of the relative stability at various speeds may be
had by noting the following tabulation of the values of Routh’s
discriminant, denoted by R:

Velocity ~ Wind chord
in to

R.
miles, wind.
79.0 1° 4180 X10°
7° -+ 32 X105iStable.
7. 10° 4 3.8X10%

5L8

47.0

45.2 12° - 7 Xl

44.2 14° -  8.7X105tUnstable.
4.7 15.5° - b X108

The table is reproduced graphically on figure 12.

%]
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A similar invest%aﬁbn for lateral stability fails to show any marked /

change with speed, as would be expected since speed depends on
pitch e and the factors which make or unmake lateral stability
are but slightly affected by angle of pitch.

~16.12..
+180
+1 b0
+l4d \ .
+120 1
+100 \ : RN
+80 _ \ AL
\ .
+b0 { %
w | //
0| 444 \\ | M ?;':
¥ AN
n: +20 - . f;r
8 v) ;2
0 %
N
-20 v
0° #|2° +/4° b 4|8 +[10° «[i2° +|IF +ib
T W/ING | CHIORD|{ TO[WIND.
b

ROUTH'S DISCRIMINANT,
VARIATION WITH ATTITUDE.
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REPORT No. 1.

PART 2.

THEORY OF AN AEROPLANE ENCOUNTERING GUSTS.

By Epwin Bmowrrn Winsox.

ARTICLE 1.
INTRODUCTION. .

The notation here used will be in the main that of Bairstow.
(Technical Report of the Committee for Aeronautics for the Year
1912-13, p. 143.) As, however, Bairstow changes his notation in
the first few pages of his report, we shall begin at the start with some
departures from him. divested olv. backward "

z, Y, 2 aTe moving axes directed, respectiv, ackward, to the
left, and upward relative to the driver; iﬁ, v 'w’y be linear velocities
and ', ¢, ' be angular velocities, resolved aflong these axes; and if
X/, g”, 7" be forces, and L/ i M, N’ be moments of forces (measured

per unit mass of the aeroplane); then the dynamical equations of

motion are
dv’[dt+w'q —v'r = X", (la)
dv' fdt+u'r’ —w'p’ =T, (18)
dw' [dt+v'p’ —u'q =7/, (1¢)
dhyfdt—1"hy+q hy=mI’, (2a)
dhyfdt —p'hy+ 1Ry =m I, @b)
dhyfdt — g’y + p'hy=mN’, (2c)
where m is the mass and
hy=p’'A~q¢' F—1'E, (3a2)
hy=¢'B—r'D—p'F, (30)
hy=r'C—p'E—¢'D, . (30

52
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are the components of momentum,—the quantities 4, B, ¢

being the moments and D, E, F the products of mertia relative to

the moving axes fixed in the body.
The symmetric aeroplane will alone be considered here;

D= F=0. (4)

If the machine is in uniform horizontal flight, all the forces,
momnents, linear velocities and angular velocities except «’ vanish,
and %’ = U, & negative c%a.ntity in magnitude equal to the uniform
velocity. (The precise backward direction of the z-axis is that
which is horizontal in uniform flight, and hence by this definition the
giilrectiondo)f this axis, and of the z-axis, varies in the aeroplane with

o speed. -

If the motion is slightly disturbed, the velocities take the values

W= Utu, v =v, 0 =w,p' =p, ¢’ =q,1' =1, (5)

where %, v, W, P, g, r are small. The products of these small quan-
tities are neglected, as in all discussions of small oscillations, and the
equations take the form

dujdt=X", dojdt+ Ur=Y", dwjdi— Ug=2", ©)
Adp[di— Edrjdt=mL’, Big/dt=m ', Cdrjds— Bdpjdt=mD'. (7)

In uniform motion the forces and moments all vanish. For the
disturbed motion they are small and may be expressed linearly in
terms of %, v, w, p, ¢, 7. The forces are due to three sources: 1° the
propeller thrust, 2° gravity, 3° the air. We shall assume that the
Erope]ler thrust (and moment, if any, arising from it) is constant;i. e.,

he motor is su%posed to speed up or slow down under changed condi-
tions 80 a8 to deliver a constant thrust. If # and ¢ are the small
itch and roll, the components of gravity are gf, —g¢, —g (see
%airstow, 144, 7u—~w), and its moments are zero because the Cg G. is
taken as origin. The air forces and moments may be written as
X,Y,Z, L, M, N and developed as

X = Xyt X+ X o+ Xw+ Xpp+ X g+ X, (8)

where Xy, Xy - -« .« . are the “resistance derivatives” taken for
the relative velocity of machine and wind. (X, and the propeller
thrust cancel, so do Z, and ¢; Y, L,, M, N, vanish.)

In the symmetric aeroplene half the resistance derivatives vanish
and the six equations of motion separate into two sets of three each,
one set for the longitudinal, the other for the transverse motion.
These equations are (Bairstow, 148, 13 and 14 with 6=0) for longi-
tudinal motion,’

du/glt =g0+ X u+ Xw+ Xy, (9a) see (1a)
dwfdt=Ug+Znu+Z,w+2Z g, (9b) see (1¢)
B/m. dg/dt= Mu+ M,w+ Mg, (9¢) see (2b)
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and, for transverse motion, .
dvfdt=—go— Ur+Y p+Y,p+Yx, (10a)see (1b)
Afm.dp/dt— Ejm. dr{dt=L» -i-L,,p + L., (10b) see (2a)
> Clm. dr/dt— E[m. dp/dt= N w+ Npp+ Nyr. (10c) see (2¢)

The integration of these equations gives the free oscillations of the
seroplane.
ARrTIOLE 2.

LONGITUDINAL MOTION IN SMALL GUSTS.

A gust if not too severe may be treated by the method of forced
oscillations. If the aeroplane is fraveling on an irregular wind, we
may regﬁrd the aver:ge wind velocity relative to the machine as that
which should be used in the computation of the resistance deriva-
tives, and we may regard the departures of the actual relative velocity
from the mean as small quantities inducing additional forces-into
the equations of motion.

Suppose first a head-on gustiness. This would introduce an extra
term of the form X u into the first equation, Z,u in the second,
and so on. If, as a result of the gust, the machine filted apprecia.bulf
the originally head-on gust would no longer be head-on, but wo d
have components u,, w, and give rise to the term X,«q+k,,wl in the
first equation. It is clear, however, that under the hypothesis of
small oscillations, w, would remain small of the second order relative
to «,. The term wal could then be neglected relative to X,u,,
unless X, much exceeded X,,.

We should in general allow a gust to have componentsu,, v, w;, p;,

, r, relative to the axes. This would take into account any possi-

o rotational motion in the gt;zt. The rotational motion of a gust
may be quite small. In the discussion by Glazebrook (Aeronautical
Journsal, July, 1914, pp. 272-301) nothing is accomplished relative
to rotationaIV gusts. Yet it may well be that the rotational element
is of great importance. For the rotary derivatives, in the case of
the machine whose derivatives are tabulated by Bairstow (loc. cit.,
159), are large. Thus a term M g, = —210g, would be comparable
with qu1= —0.14w, if ¢, were 1/700 of u,; i. e., if the gust were a uni-
form whirl of radius 700 feet. the same way L, is large. In the
machine that will be discussed in what follows M, is also large,
viz.,— 150.

The equations for the longitudinal motion in a general gust are
(see 9@-«%

dufdt— g6 — Xyu— Xyw—~ X g =X, + Xw, + Xog,. (11a)
dw/dt— Uqg—Zpu~Zgw—~2Zgg =Zyu+Zw0,+2Zg,. (110)
Bim dgjdt— Mu— Mo — Mg= My, +Mw +Mg,. (11lc)

The solution of these equations consists of two parts: 1° the so-
called complementary function which gives the natural oscillations,
2° the particular integral which gives the forced oscillations due to
the gust. To effect a solution for the particuler integral, we must
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make some assumption as to the value of the components %, w,, ¢,

of the gusts as functions of the time. Before ma.lﬂ'n&such an assum

tion for the particular integral, the solution by the ‘‘operational”

method mey Be indicated. (See Wilson, Advanced Caleulus, p. 223.)
Let D denote differentiation. The equations may be written

D-X)yu—Xw— (X D+g)0 =X, +Xw +Xgq, (120)
— 2+ (D —Z)yw— (Zy+ U)DO=Z g, + Z i, + Z g, (120)
— Mu— Mpw+ (kD*— M D)o = My, + Maw, + My, (12¢)

where k% =DB/m. These equations are solved algebraically by
multiplying by the proper cofactor determinants and adding. Then

D+9) Xy —Xp—(XD+g)

g _igx D Z.D-Z. —(ZX D

- — Ly — + U=|by U—Lty — +

'—ﬂi‘u T - ) S T v e v
+| Xy — Xy — (X D+g)

ZyD—Zy —Zer YD |, (13
M, —M, gc’:g’—U)Mqu( )

A s
— Loy — + ql
#, ik oD
or, if the determinant on the left be denoted by 4,
ZyD—-2, —(Z;+U)D |u, (14a)
M, — M, ¥D—MD

X _Xw""
+De —, EDADy 1| 2I0 77 "
D'~ M, M, M, 1D

There are similar equations for w and 6, namely,
, l.D—XuX,, - (XD+g)
Au=

—2y,7Zy — (Zg+ U)D|w, 145
&+ oo (145)

+

Au=

¢

w Mo,

D-X,X, -
, +D| Z, —(Z,+ U)D A A
' M, i’b—MqD U +I T
D-X, —-X, X,
Ab= -Z, D~2, Z,lq . (14¢)
-M, -M, Y,
D-%,Z D-X, X,
+D| "-ﬂfw i{u b +Dl _'-ﬂiu Mw s

The general (literal) integration of these equations would be so
complicated as to be useless. We shall make use of the formulas
only after simplification by the insertion of numerical data.
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Possible methods of treating gqusts.—The only treatment of Gﬁ:its
which I have seen is that described somewhat popularly b e-
brook (loc. cit.). He seems fo state, as the main method of attack
that of small differences whereby it is assumed that the involved
time over which the motion is to be studied is divided into small parts
and that the atmospheric conditions remain constant during each of
these parts. By then regarding the differential equations of motion
as equations in differences of the following form,

A =(X'—w'q +v'r) AL, ete.,
Ahy = (mL’ +15h,— ¢'hs) A, ete.,

it is possible to compute, through a series of intervals A¢, the ap-
proximate positions of the aeroplane. This method is, as Glazebrook
states, exceedingly tedious, for Af must be taken very small, indeed
only a small part of a second in the case of a sharp gust, in order that
the solution may be even approximately satisfactory for the differ-
ential equations. Moreover, the whole calculation apparently has
to be done from the beginning for each new type of gust which one
desires to study. The method, however, is applicable in all gener-
aliﬁirrespecﬁve of the stability of the aeroplane.

o reason that I have chosen to operate on the basis of small
oscillations is that after & certain amount of preliminary calculation
has been accomplished my formulas will enable me to freat very
rapidly a series of very different types of gusts. My method is not
applicable, of course, to machines which are not stable, for the oscilla-
tions could not remain small with such machines, but it is probably
doubtful whether the motion of the unstable aeroplene in a gusty
wind is of very great importance, as the instability of the machine is
not unlikely to cause indeterminately violent motions on relatively
small gusts. I have tried to devise methods which would enable me
to use graphical ag?aratus for obtaining the solutions here desired,
but have been unable to throw the equations into a form which lends
itself to such methods.

Moreover, the coefficients which enter into the equations and into
the solutions at all stages of the work are of such varying magnitudes
that it is difficult to obtain any reasonably accurate results. It seems
impossible—I have not yet succeeded in avoiding the difficulty—to
eliminate the occasional necessity of subtracting numbers which are
nearly equal in magnitude; thus the accuracy of the figures is, after
subtraction, seriously impaired. As I was aware that the data fur-
nished me were probably not accurate to three figures, I first made
the calculations with slide-rule accuracy, only to find that the final
results became wholly illusory, owing to the difficulty just mentioned.
I have therefore had to recompute everything with 4-place logarithm
tables. Most of the figures which occur in the work are therefore
4-place numbers. Those which appear to have only three significant

figures generally have the fo figure zero when occurring in
formulas con i 4-%1&03 numbers. In the calculations toward the
end of the research the 4- accuracy has become reduced to

three or two figure accuracy, but it did not seem best systematicz}lllg

to reduce the numbers by the omission of two figures, although
reduction has occasionally been made in final calculations.

e e e o T e A ot A e T L e STy S YTy T s emynens
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ARTIOLE 3. .
NUMERICAL EQUATIONS FOR HIGH SPEED.
The dats for high speed are (see Hunsaker, p. 47):
Xy=—-0128 X,=+0.162, X,=0
Zy=—0.557, Zy=—3.05, Zy=0 (15)
=0, M =41, 74 M = —150
B/m==7c23=-34 U= —115. 5 g-=32 17

The cofactors 6 in the determinant A are—

ID— = (Zg+ U)D D+3.95 115.6D
T ~1.74 34D*+150D
— 3419+ 284.3D%+793.5D =5,
l_ w KD~ M,D|_|~17¢ 34D*+150D
-X, (X9D+g) j—0.162 —~32.17
=5.508D%+24.30D + 55.98 =5,
lD—X,,, — (XD +%I _ —0.162 — 32.17
—Z, —(Z+7) +3.95 115.5D
= 13.46D+127.1=8,
§¢=Z + 1) Z _ 115.6D 0.557[
T MqD = 340°+ 150D 0
=  —18.94D*—83.56D =3,
P—Xu (X9D+g)l _ D+ 0128 — 82,17
—M, D = 0 34024 150D
= 34D°+154.3D'4+19.20D =5,
—(X9D+%D ~X,| _ |- 8217 D¥ 0128
—(Zg+ O) ' 115.5D 0.557| "
= —115.5D°—14.718D—17.92=3,
~Z, D—z,,l _ |- o0.557 D+ 3.95
_M, -, 0 — 1.74
= —0.9692=3,
-X, D-X,  _ l 0. 162 D+ 0.128
-M, . 7A - e 0
= I 74D+ 2297 =3,
+0.128 —0.162

- Xu - X w —_
—Z, D-2Z, :
The value of the determinant A is

34D+ 288.7D°+833.0D°+ 115.1D +31.18 =
34(DA+8.490D° + 24.50D* + 3 385D +0.9170).

0.557 D+3.95
= D*44.078D+.5957 =3,
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(The value of the determinant checks by three calculations.)
The roots of the equation .

F(D)=D*+8.4911°+24.5D%+3.385D+0.917=0 (18)

determine the decrements and periods of the natural oscillations,

and must be found. (Unfortunately these roots must be found with

considerable accuracy, and the rough first approximations, such as

are indicated by Bairstow, seem insufficient for our use.) Lot it be

ﬁumed that one root is so large that it may be found approximately
m

D++8.49D3+24.5D*=D*+8.49D +24.5=0.
Then D = —4.245 +2.545.

If now r be an approximate solution of f(D)=0, a new approxi-'-
ma'.rtiilon may be had by assuming »- 2, with z small, as a root.
en
- _J@) _  r+8.49r°+424.5r+ 3.385r1+-0.917
@ 425471 +40r+3.385

approximately. As 73+ 8.49r+24.5=0, the fraction simplifies to

3.386r-+0.917

&= =53 08r £ 2114 008 1074,

if 7= —4.245—-2.545i. This root of f{D) =0 is therefore
A D= —4,182+12.438i. y
The factor of f(D) corresponding to this pair of roots is

D?4-8.364D 1-23.43. (17a)

Let the other factor be I*+aD+4b. Then 23.430=0.917 and
5=.03914. Also, 8.364(.0391)+23.43¢=38.385 or 23.43¢=3.058
and ¢=.1305. Hence the second factor is

DA +.1306D +.03914. 17%)

Afglzn a(.1 check on the work we may multiply the two factors together;
we

‘ (D*+8.364D +23.43) (D*+.1305D+.03914) =
DA+ 8.494D° 424,567 4-3.385D +.9170.

We can find, merely by careful trial, better factors as

(1P +8.359D +23.37) (D*+.1308D +.03924) = 1
D44+ 8.490D +-24.500° +-3.385D + .9170. (18)

The definitive roots of (D) =A=0 may therefore be taken ag,

a= —4.180 —2.430%, b= —4.180 +2.430i
c= —.0654— .18704, d = — .0654+.1870% (19)

a T e T S Y T e e e e e e e
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ARTIOLE 4.
INTEGRATION FOR HIGH SPEED.

The numerical equation for u is (see 14a):
34 (D*+8.49 D*+24.5 D*+3.385 D+0.917)
=(Xudu+Zubu) U+ Doy, + Medygq,
= —34 (0.128 D+1.160 D*+3.385 D+0.917) w, (20)
+34 D (0.162 D*+0.715 D +1.847) 1,
—34 (59.37 D+560.6) g,.
The numerical equation for w is (see 145):
34 (D*+8.49 IP+-24.5 D?*+3.385 D+40.917) w
= (X b+ Zbn+ Mpds) 0+ Déu, + MByg,
= —34 (3.95 D*+23.94 D’é—3.385 D+0.917) w0, (200)
—34 I» (0.5567 D+2.458) uy’
+34 (509.5 D*+65.21 D+79.05) g,
The numerical equation for ¢ is (see 14¢):
34 (D*+8.49 D*+24.5 D*+3.385 D+0.917) 0
= M8y, +D85u, + Dé,yw, (20¢)
=34 (4.412 D*+17.99 D+2.628) g, '
—34 (0.02851) Du, +34 D(.0511'Z D +.00855) w,.
The solutions are of the type:
w= Oye® 4 O et + Qe 4- O e® - I,
w= 0%+ Ope¥ + Ope®+ Oet 4 1, 21)
6= Oy + Oyue? + Oyye + Oy + 1,

where @, b, ¢, d are the roots of the biquadratic (see 19), 0; certain.,

constants of integration, and I, I,,, Iy a set of particular solutions
of the equations. We: shall determine I,,, I,,, J; in such a manner
that they will not contain the functions e®, etc.; we may therefore
determine in advance the relations between the twelve (’s. (This
will debar us from using as gusts u,, w,, ¢,, those which are of the
form Ce®, etc.; but this restriction is not important—such o damped
gust tuned to the damping and.period of the machine is highly
mprobable in nature.) .

we substitute u, w, 6 in the equations (14), the particular solu-
tions must cancel out among themselves (since they can not cancel
terms of the form %) and leave

(a—X,) O, —X,,0,e%— (X ga+q) Cpe®+similar terms=0,
—Z,0,6%+ (a—Z,) Cye®—(Zg+ V) alye® 4+ oo _.__. =0,
— M, 0%~ M0+ 2 D~ M D) Cye™+ . ____. =0.
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These equations hold identically in ¢, and the coefficient of ¢%, etc., in
each must vanish. The three homogeneous equations in the three
unknowns Oy, Oy, C; (or the similar equations in Oy, O, COn; O
Crsy Ose3 Oy é’u, ) are consistent beceuse a (or b ¢, d) 18 a Toot of
the determinant A, and the solutions are:

a—X, — Xy

~Xo—g ||-0 o—Xd.
Out Out Cu= a—i —%aH—gUaa—Zu | —Zy a—2Z,,’

with O,: Oy: Gy, determined by the same functions of b. In words:
To obtain the ratios of the coefficients of e# in w, v, w, substitute
D =g in the determinants &;,, 8y, 8. Or Op: Oy 0, as

13.46a4-127.1 : —115.6a*—14.78a—17.92 : a*+4.078a-}-.6957
or Oy: 0y: Oy=13.46a+127.1 : 950.8¢+2560 : —4.281¢—22.81.
This gives 0y: Cy: Oy as

70.8—32.7 1:—1414—2310 3:—4.92+10.40 ¢ or as
1: —4.04—34.527: —.1132+.09486 2.
The values of O,;: 0y O, are the\;: conjugates
1:—4.044-34.5:—.1132—.0946 4.

To find Oy Oy O3 we must substitute c= —.065—.187 ¢ in the same
determinants. Then

Oy’ O Cry=13.48c+127.1: .330—13.39: 3.947c+.5565. This gives

3t Ui Cys 88

126.2—2.516 ¢:—13.37—.0623 7: .2983 —.7380 7
or 1:—.1058—.002587 7: .002478 —.005799 7.

The values of the conjugates are:
O, Cbit Coy=1:—.1058+.002587 i: .002478+.005799 4.
The general solutions of the equation of motion are:

w=Ce%+ O, %+ Oye 4+ Coe® + 1, T (22a)
w=(—4.04—34.5 1) C,,e®+ (—4.04 +34.5 2) O,% )
+ (—.1058 —.002587 1) Cppe® + (— .1058+.002587 ) O 6 + I,
6= (—.1132+.0946 1) O e® + (—.1132—.0946 1) 0,,¢% , (2§c)
+ (.002478 — 005799 ) Cjs¢™ + (.002478 +.005799 7) (6% + Io.

From these equations we see that the heavily damped short period
oscillation (roofs @, b) is about 34% times as strong in w &s in u;
whereas the mildly damped long period oscillation (roots ¢, d) is
about 9% times ag effective in % asin w. Moreover, the short period
motions in # and w are about quartered; but the long period motions’
are in opposite phase. The amplitudé of the short period motion in
0is about iy that of w; hence for each foot-second of short oscillation
in w there 18 about 1° in §. 'The amplitude of the long périod motion
in @ is about .006 of that in %; hence for each foot-second of long
oscillation in % there is about ° in 6. The damping of the short
oscillation is so strong that the amplitude is reduced to about one-
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ninetieth in one second where in the. case of the long oscillation
the reduction is only to about nine-tenths of its original value in one
second; the relative amplitudes in the cases of u, w, § are more
important in the case of the long than in that of the short period
oscillation because the latter is so quickly damped out that the

ing may not get well started. However, the extreme magnitude of
the short period oscillation in w as_compared with « indicates the
possibility of relatively violent accelerations in w; indeed, it is the
short period oscillation which may account for initial difficulties
whereas the long period oscillation accounts for the progressive
troubles, due to gusts. )

There remain to be determined the values of the constants ¢ of
integration from the initial conditions of uniform flight, i. e., u=w=
f§=g=0. Let the particular solutions have the initial values 7,
Iwo; ]ﬁo- Then

0= Oy + Oyt 013"!‘ 0¢+Iuo: .
0= (2 4.04—34.5)) Cly+ (= 4.04+34.5 3) 0, -
+ (—.1058 —.002587 %) Oy5+ ( — .1058 +.002587 4) Gy + Lo,
0=(—.1132+.0946 1) C,, + (—.1132—.0946 3)C,,
+(.002478 — .005799 %) Cys + (.002478 +.005799 3) O\ + Iy,
0= (—.1132+.0946 ©)aC,, + (—.1132—.0946 3)bC,,
+ (.002478 — .005799 2)cC,y+ (.002478 4 .005799 2)d 0, + s,
or 0=(.703 — .205 1) G, + (.703 + .205 2) O, + (— .001246 — 000084 3) C,,
+ (—.001246 +.000084 3)C,,+ I'g,.

The values of O, 0, and O,
Oyt Cy=dA, Oyt C=B, i(0,— 0)=0, 1(C,y~Os)=D ste real
The equations may therefore be written

0=A+B+1,

0= —4.04 A+34.5 0—.1058 B+.002587 D+ I,,
=~—.132 A—.0946 C+.002478 B+.005799 D+ I,

0=.703 A+.205 O—.001246 B+.000084 D+ I'y,.

The values for 4, B, ¢, D are (as found by determinants and checked
by substitution):

A= —.0008856 I,,+.008198 I,,,+.01621 I5,—1.372 Iy,

C= —.003196 I,—.02803 I, .01476 Iy, —.1543 I's, (23)
B= —(1—.0008856)1,,— .008198 I,,,—.01621 Is+1.372 I,

D =.35771,,— .2940 I;,—172.0 Ij,—29.89 I'g,. -

The solutions (22) of the equations of motion of the aeroplane in-
volve imaginary numbers from which they may be freed by using
A, B, 0, D1in place of 0y, O,,, O, Oy, The equations then become

u=¢g*¥ (A cos 2.43¢4 O sin 2.437]
+ %54 (B cos .187t+ D gin .1878) + I,

w=e—+1% [(34.5 O—4.04 A) cos 2.43¢
—(34.5 A+4.04 0) sin 2.43f]
+ 954 [(.002587 D — .1058 B) cos .187¢
—(.002587 B+.1058 D) sin 1878+ I,,,

Cy, are conjugate imaginaries; hence-
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=418 [—(.1132 A+.0946 C) cos 2.43¢
+(.0048 A—.1132 O) sin 2.43(]
+ 05 [(,00278 B +.005799 D) cos .187¢
+(.002478 D —.005799 B) sin .187¢] + L.

These formulas enable us to stuc%ﬁ any partioular gust we desire.
Tt is merely m to find the particular solutions, then the
constants 4, B, C, D. e shall reduce the coeflicients in the paren-

theses. Then

w=e*28 (A cos 2.43t+ O sin 2.43t)
+e%5¢ (B cos .187¢+Dgin .187t) + I,  (24a)

=18 (A’ cos 2.43¢+ O sin 2.43t) :
495 (B’ cos .187¢+ D' sin .1878) + 1,,, (24D)

0=e*18 (A7 cos 2.43t+ O sin 2.43t)
+ et (B cos 1874+ D" sin .1878) + I, (24¢)
where

A’ = — 1066 Ipo—1.0001 I, +.4436 L, +.220 I's,

0’ = 043468 I, — .1696 I, —.6190 L, +47.93 I'a, (25)
B'=.1068 I,+.000107 L,,— .4436 Too—.220 L's,

D’ = —.03523 Ijo+.03112 Iy+18.20 Is,+3.168 ',

A" = +.0004024 1,,,+.001724 I,;,—.003231 Is,+.1698 I's,

G" = +.0002778 I,,—.003947 I,,—.000136 Ipo—.1123 s, (26)
B? = —.0004024 I,—.001724 1,,,—.99678 Iy,—.1698 I's,, -

D" =.006683 I,—.000681 I,,— .4261 Ip,—.08201 I’,.

In any 2é)ﬁv.rtlcula.r case the calculation of the coefficients in (24)
from (23), (25), (26) is likely to be relatively simple because there
are so many terms that for that case may be neg].ll)gible.

" ARTIOLE 5.
SOME SPECIAL GUSTS.

If we wigh to repfesent a gust which, starting from the condition
of still air, increases to & certain intensity J we may use the function

J (1—e). © (24)

The value of r determines the sharpness of the gust. If r=1, the
has reached about two-thirds of its value in one second; if r=5,

e gust has reached two-thirds of its value in one-fifth of a second;

E r=%, the (i:wo-thirds.inﬁensity 1&:1 reag}alled in 5 seconds. We may per-
aps regard r=1 as giving & moderately sharp gust, r=5 as giving a
very sharp, and =4 as giving a tolprayt;ly mﬂfug‘llst. The Exl.nctlon
(.‘g‘%has the advantage of being in such form that the determination
of the particular integrals is easy. (See Wilson’s Advanced Calculus.)

[ ol J anndiad T i~ b DAY 2 ) ” ST .
. .- 2 LT T . N ..t e i 1
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Case 1. Head-on gust—mild. wu,=J (1—e2).
In equations (20) we let u,=J (1—e®#), w;=¢,=0. Then

I, =—J (1—.247 &%), I, =—.753J,

I, =.082J %, Tpo=—.082J,"
Io = —.00495J &=, “s= — 0049,
’p=.00099J e, ’s5= 00099/

(N. B.—The total increase J of the wind occurs everywhere as a
factor and may be omitted—the results then are for an increase of
1 foot-second.)

= Je—54( 622 cos .187¢+-.630 sin .187f) — J (1 —.247¢%),

w=Je15( — 004 cos 2.43¢-+.003 sin 2.48t) — Je—4(.078 cos .187¢-+
.059 sin .187%) +.082Je%,

6=Je*%4(,00495 cos .187¢—.0031 sin .187¢) —.00495J¢ %,

It appears from these equations that the effect of a mild head-on
t of magnitude J is as follows: (1) The machine takes up an ea?

owly damped oscillation in % of amplitude about 89 per cent of J/;
after the oscillation dies out the machine is making aspeed o less rela-
tive to the ground and hence the oﬁ.%z]'nal speed relative to the wind.
(2) There is a rapidly damped oscillation in w of rather small mﬁi-
tude and & slowly damped one of about 10 per cent of /, the final
condition bein;i tﬂat of horizontal flight. (3) There is a slow oscilla-
tion in pitch of about .0058 J radians or about .32 J°. If the mag-
nitude o is great, the pitching becomes so marked that the approxi-
mate method of solution can no longer be considered valid—a fust
of 20 foot-seconds causing a pitch of some 6°. As the period is lo
(sbout one-half minute) the pilot should have ample time to correc
_the trouble before tifllproduces serious consequences, s

The result of 4 tail-on gust is the opposite of that of the head-on
gust and therefore need not bhe trea,tecf) separately. For the head-on

t J is negative; for a rear gst, positive. .

To calculate the stresses on the machine or operator caused by the
gﬂllmt we have merely to find the accelerations du/dt and dw/dt of which

e first is (approximately)—

du/dt = Je—"(.08 cos .187¢—.16 gin .187£) —.05Je—%.

This acceleration reaches a maximum of something of the order of
J/10; and if J should be 20 foot-seconds, the eration would be
only about 2, or 6 per cent of g—not a large amount. The accelera-
tion dw/dt is likewise small. (N. B.—The initial accelerations du/d¢
and dw/d¢ should vanish, because the gust starts from zero. That
the initial values are not exactly zero in the above formulss is due to
the roughness of the final calculations for 4 and w.)

The path of the machine varies from the horizontal by the amount

/3
2= f (w+115.50)dt
[]
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which accounts for the effect of the vertical velocity and of the climb-
ing in the path. The result is (roughly)

¢ .
gemd f (5 cos 18Tt— .4 sin .1878)di— .5e-*dt,

z=Jle-%54(cos 1874+ 3 sin .187£) +2.5¢—% —3.5].

The motion is oscillatory approaching as a limit z=—3.5 JJ. The
machine will rise 70 feet when the gust is 20 foot-seconds head-on.

Casg 2. Up gust—mild. w,=J(1—e%).

I,=305 J%,  IL,=.305J,
L=J(1—1.0126-%),  I,=—.012J,
I=.000737 Je*, o= 000737 J,

L=—.000147 Je=,  Ip=—.000147 J.
1= Je—%¢(— 305 cos .187¢{—.0108 sin .187¢)+.305 Je—¥,

we=Je 4% — 02 cos 2.43¢+.026 sin 2.43%) 4- Je—%5%(,032 cos .187¢+
.002 sin .187¢) +J(1—1.012¢—%),

0=Je54(.0008 cos 187¢-}-.0017 sin .187#) + .00074e—%).

The effect of the up gust is to set up a small long oscillation in »
of magnitude about 0.3 J, & very oscillation in w, and a long
oscillation of intensity .0018 J radians or .11 J° in 6. e compar-
ative effects on the velocity and angle in the case of head-on and up

ts show that the up gustis only about one-third as effective as the
eagion gust. The accelerations in the case of the up gust are all
SI;
b 'i'[‘o find the displacement in a vertical direction we integrate as
efore.

2= J:(w+ 115.50)dt.

It is scarcely necessary to trouble with the trigonometric terms

artly because the motion is less pronounced than in Case 1, partly
gecause there is here the secular term J#, which will carry the machine
up with the gust and will be the chief effect after the lapse of a short
time

A down gust is in every way the opposite of an up gust and need
not be separately treated.

Case 3. Rotary gust—mild. ¢q,=J(1—e%).
I,=—J(610.6—475.5¢~%),  I,=—135.1J.

I,=J(86.21 ~74.87¢%), I,=11.34 J.
L= J(2.865+.691e%), L,=3.556 J.
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Ié= -.138 JG.—’”, Paa= —~.138 J.

I,=Je+1%( 46 cos 2.43t+.1875 sin 2.43¢)
+ Je—954(134.7 cos .187¢— 659 sin .187¢)
~ J(610.6 — 475.5¢ —%),

I,=Je—15(4.61 cos 2.43f— 16.82 sin 2.43f)
+ Je—%54(_15.95 cos .187¢+ 70.08 sin .187¢)
+J(86.21 —74.87¢%),

Ly=Je*1%(— 0698 cos 2.43¢+.0223 sin 2.43)
+ Je~834( — 3 487 cos .187t— 2.414 sin |187%)
+J(2.8654.691 ¢ —%).

The effect of the rotary gust is a long oscillation in « (the short
one is negligible) of magnitude about 670 ¢/, a short oscillation inw
of about 17 J and a long one of about 71 J, a long oscillation in 6 of
about 4.1 J. The comparison with former cases may be made by
supposing first that the oscillation in u may reach some 20 foot-
goconds. Then J=1/33=.03. The amplitude of the oscillation
in 6 is then some 0.12 radians, which is an amount comparable with
the 6° of Case 1. To get an idea of what J=.03 means, we may
note that if a gust of 20 foot-seconds is due to & whirl of the air as
a solid body with ¢,=.03, the radius of the whirl is 660 feet. We
may therefore say that the. effect of a whirl of radius 660 generating
velocity of 20 foot-seconds is of itself aboutequal to that of a head-on
velocity of that amount. If, however, a machine ran into such a
whirl, 1t would experience both the effect of the whirl and of the
linear veloci;:ty generatéd by it and would be disturbed considerably
more than if it had encountered a pure head-on gust. We may
therefore say that if the head-on gust arises from a whirl of mate-
rially less than 660-foot radius, the effect of the whirl is quite con-
sidera'blyd larger than that due to a straight head-on gust of equal
m tude. - 1 o

e conditions after enogﬁh time has elapsed to allow the expo-

nential term to become small is

I,=~-610.6 J. 1,=86.2J. I1,=2.865J.

It is therefore seen that the machine takes up the head-on velocity,
acquires a small upward velocity, and is inclined at an angle 2.865J
r&%n.ns to the horizontal,. these effects: being due exclusively to
the rotary motion of the air. The path in space could be obtained
by integration, but (like the eﬂect% previously mentioned) would
not be the true path if ‘the rotary motion were accompanied by
horizontal or vertical linear gusts. It seems thersfore scarcely
worth while to find the path. ~ . o :

The value that I attach to this theory of rotary gusts does not
arise so much from the fact that such gusis-seem nowhere to have
been treated as from the revelation of the powerful effects of such
gusts. When a machine is flying low it must expect to meet air
which has been set in rotation by the friction of the wind against
the ground, against buildings, .or against trees. It seems certajn
that very material angular velocities might be set up and that these
might (owing to thewr short radius) induce only moderate linear
gusts. In such cases, if they can arise as assumed, the machine

25802°—S. Doc. 268, 64-1—3F5
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miﬁl}t behave very much worse than could be foreseen when nothing
is known of rotary gusts. 1% is not unlikely, however, that rotary
gusts would be very irregular themselves and that, before the
machine could feel the full effects of one, the %ust might have dis-
appeared. In the same way rotation could be generated at the
interface between dark and Yighb regions of air—indeed any sharp
relative motion of the air is likely to contain rotation.

Case 4. Head-on gust—moderate. u,=J(1—e*).

I,=—J(1+.09876¢¢), Io= —1.00876 J,
1,=.1307 Je, Tpp=.1307 J,
Ty=—.00196 Je, To= —.00196 J,
To=+.00196 Jet, Pgo= +.00196 J.

w=Je*1%(— 000876 cos 2.43¢t—.000486 sin 2.43%
+ Je0%4%(1.09944 cos .187¢— .1528 sin .187%)
—J (1+.09876¢7%),

we=Je 1% (— 01405 cos 2.431+.02528 sin 2.43f)
+ Je—%tt( — 1159 cos .187¢+.01493 sin .187¢)
+.1307J e, .

6=Je*1%(,0001207 cos 2.43t~.00000895 sin 2.43t)
+ Je5#(,001838 cos .187¢—.006755 sin .187¢)
—.00196 Jet. '

The short oscillation in % is negligible not only in regard to its
magnitude but even as far as accelerations are concerned. Then

dufdt=Je%%(— .1 cos .187¢+4 .21 sin .1878) + .1Je .

This is at most about .25 J, or'5 foot-seconds 2 if J =20. The short
oscillation in w is considerai;ly smaller than the long, but when the
coefficients —4.18 and 2.43 are brou%'lt in by differentiating to find
dw/dt, whereas —.0654 and .187 are brought in by the long oscilla-
tion, 1t appears that the short oscillation is effactive in determining
the acceleration. Thus

dw|dt=Je41%( .12 cos 2.43t— .07 sin 2.43t)
+ Je°*( 01 cos .187)—.13 Jet.

The amount of this acceleration is at most about J/12, one-third that
in u; dtihe effect, however, is produced very quickly, in the first half
‘8eCON
In integrating to find the path in & vertical plane we may neglect
the short oscillation, beca.uscla) in this case we ]d).ivide by —i.lgb and
%ﬁ& whereas for the long oscillation we divide by —.0654 and .187.
en

t
2= JC (w+115.50)ds

. ‘
=J f [6—0%4(.106 cos .187t—.765 sin .187¢) —.095¢—;]d¢
o

= Jg—9%4(2.3 gin .187¢+3.5 cos 1.87¢)+.095 Je*—3.6 J.

R e 2 —a . — o e e e e v e e =~ e
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The final condition is & rise of —3.6 J, an amount which agrees with
that in the case of the mild gust (Case 1) in as far as the rough calcu-
lation of that case permits us to judge.

Case 5. Up gusti—moderate. w,=J(1—et).

I,=.0778 Jet, Ip=.0773 J,.
I,=—J (1—1.205 ¢%),  In=.205J,

Iy= —.003069 Je, Lp=—.003069 J,
V5= 003069 Je, Tgy=.003069 J.

u=Je*18%(— 002641 cos 2.43t—.00651 sin 2.43t)
+ Je0%4 (= 07466 cos .187¢4-.4034 sin .187¢)4.0773 Je,

we=Je41%(— 2139 cos 2.43¢+.1174 sin 2.438)
+ Je—9542( 008943 cos .187¢— .02337 sin .187¢) — J (1 — 1.205¢~%),

0=Je*%(.0009148 cos 2.43¢--.000487 sin 2.43¢)
+ Je—%54( 4 .002154 cos .187f— .001432 sin .187¢) —.003069 Je*.

The short oscillation is negligible in u as far as concerns % itself.
In calculating the acceleration du/dt the short oscillation is not
negligible relative to the long; but the acceleration is small any way.
The effect of an up gust J on u is about one-third the effect of an

ual head-on gust (see Case 2). -

e short oscillation is the main thing in w—its amplitude is about
J/4, whereas the amplitude of the long oscillation is about ./ 440, or
one-tenth as much. The acceleration dw/df may therefore be cal-
culated exclusively from the short oscillation; it is

dw|dt=Je41%(1.2 cos 2.43t)—J (1—e).
This means values approximately as follows:

t=0 y %: % %7
ace.=0— 38 J,= & J,— 7 J,—6 .

I# J should be 20 foot-seconds, the maximum acceleration would

be about f5//2, even & gust of 10 foot-seconds would produce an accel-
eration of g/4. Such accelerations coming upon the pilot in one-half

8 second might considerably surprise and disturb him. An addition
of 25 to 50 per cent in the a%}iarent weight of the machine could
hartilfy strain it to an appreciable extent in view of the large factor
of 8 eigr used in the design. (N. B.—For an up gust J is negative.
For ﬁ )ow:n gust the operator would lose 25 to 50 per cent of his
weight.

e path of the machine in space is not of great importance in
this cagse. The chief feature is the general drift of the machine with
the current. »

Case 6. Rotary ate. gq,=J (1—e).

As we know so little of the rotation in the atmosphere and as
nothing particular of interest seems to be indicated for this case
:Zleruland above what was found in Case 3, we shall not carry out the

culations.
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Case 7. Head-on gust—sharp. w=J (L—e¥).
Ty= —J(1+.01872 %), I,=—1.01872J,

I,= —.05102 Je<, Lo=— .05102 J,
To=—.0008896 Je%, I = —.0008896 J,
7o = 004448 Je—, 7, =.004448 J.

uw=Je*1%(— 005632 cos 2.43¢+.003986 sin 2.43%),
F Je—%e5t(1.02435 cos .187¢—.3294 sin .187%),
-J(1+.01872 %),

w=Je—1%(,16803 cos 2.43t+.1782 sin 2.43¢),
FJeo5( — 1093 cos .187t+.0322 sin .187¢),

—.05102 Je,

f== Je—-18(.00026 cos 2.43¢t— .000984 sin 2.43t),

+ Je~%54( 000628 cos .187¢— .006755 sin .187¢).
—.0008896 Je—. o .

Here again the short oscillation in v is insignificant. The long
oscillation as in Case 4 has an amplitude a little in excess of J. The
acceleration du/dt is small of the order J/5. The reason that a sh
head gust does not give a large value to du/d¢ is probably because
the gust can blow througlh the machine; the acceleration is therefore
not large except at the loops of the slow oscillation.

The short-period: oscillation in w has now become stronfer than
the long oscillation and the acceleration dw/dt is mostly due to it
and may be written

dw/dt=Je15( — 25 cos 2.43t— 1.13 sin 2.438)+.25 Je.

The value of the acceleration never gets lar,«f because it is damped
out before the sine term gets eﬁectwe—dper aps —0.4 J would be
about its maximum value. A sharp head-on gust is therefore about
half as effective a3 & moderate up %ust of the same intensity. Since
up iusts are perhaps not likely to be as intense as head-on gusts, we
might hezard a guess that sharp head-on gusts would inconvenience
the pilot about as much as moderate up gusts.
e most important terms in the path 1n space are

z=dJeo™4(1.2 sin .187¢+3.5 cos .187¢)—3.5 J.

The total rise is again —3.5 J. S
Case 8. Up gust—sharp. w,=J(L—e™).

I,=.06621 Je~<, T,o=.06621 J,.

IL=—dJ(1—.5605 %),  I,=—.4395 J,

L= — 00778 Je%, Ir,=—.00778 J,
Iy,=.0389 Je%, : Il,=.0389 J.

we= Je1%( — 05714 cos 2.43¢+.006 sin 2.43%)
+ Je—t( — 00907 cos .187¢+ .3285 sin .187%)
+.06621 Je <,

w=Je1%( 4378 cos 2.43¢+ 1.947 sin 2.43)

+ Je934(,00181 cos .187f—.03474 sin .187¢)
—J(1—.5605 %),

B e e et T rartd
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= Je—415( 0059 cos 2.43t— .0122 sin 2.43t) . .
+ Je—%54( 001883 cos .187¢-+.0008667 sin .187%)
—.00778 Je.

The oscillation in u is ‘of long period,'and the acceleration in % is
small. The oscillation in w has a short-period term of great impor-
tance at the start, but except for this there is very little oscillation
in w. The acceleration is

i

duw/dt=Je—*%(2.9 cos 2.43t—9.2 sin 2.43t) — 2.8 Je%.

(N. B.—The value of dw/dt when t=0 should be 0 instead of J/10.
The failure to check seems due to multiplication of errors, which is:
unavoidable. The ta.(:(:ura.,%{1 of the work in Case 8 and Case 5 ap}a')ea._rs
reduced to two figures.) e acceleration is now very serious indeed;
it i3 about —9.2 Je™#¥ gin-2.43¢, as the- other two terms come
near canceling. The maximum value occurs when #=.217, a little
over one-fifth of-a second, .as is then about-—1.85 J. - If J should
be.as large as:—18 foot-seconds, the acceleration would equal g—=32.
Clearly such a sharp gust if it existed would be ‘ve? dangerous from
the sudden forces it would bring into play. As the machine, how-
cver, would travel only about 24 feet during one-fifth second, it is
reasonable to doubt whether in so short a distance so large a cfla.nge
in vertical air velocity could occur.- * ' i
The path in space 18 found to b{e approximately

2= —1.2 Je1% cog 2.43¢41.1 Je ot cos 1876—.1 Jet4.2 J—Jt.
The final effect is the general drift with the gust, less a lag of J/5.
Awriois 6. |
'THE CONSTRAINED AEROPLANE. ..
If‘ an aero'ﬁiiané is 6oﬁstiainé<i. to remaiin, always h_o‘r.izontal by
mechanism which does not otherwise alter the machine or its dynam-

ical properties, the equations of motion in aﬁ%

! t may be found from
ur previous equations by setting §=g=0. -

en ~

(D—-X,) u— Xyw= X, + X,w, + X g,
- uu+(D'“Zw)w'=Zu'll'1'|7Zw'zD1+Z 15
-Muyu—Maw = =M+ Mo+ +F,

where F'is the effective forcq due t0 the constraint apd is assumed to
affect moments only, not components of horizontal or vertical force.
The last equation merely determines F. . ’

With the numerical date we find for high speed

@D. +128)u—.162w = —.128xu, }-.162w,,
557w+ (D +3.95)w = — .557u, —3.95w,,
. F=—174(w+w,) +15Qq,.

Q - -
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The natural motion of the machine when slightly disturbed in
steady air is found from

A= +-é§§ p:gl_gﬁ —D*+4.078D +.598 =0.

The roots are
D=—-2,039+4+1.887= —38.926 or —0.152.

We thus find the first result: The machine, when disturbed, does
not execute a double damped oscillation, but has an aperiodic motion

of the form
C e‘""‘-!—C’ o1,

The two damping fa.ctors ~3.93 and —0. 15 lie between the values
—4.18 and — 06545 reviously found. .

The unconstrained mechine was stable for the speeds 79, 51, and 47
mile-hours; unstable for 45.2 mile-hours and lower eeds
take the data for 47 mile-hours and use them for the constramed
motion, we find

.151 075

of which the roots are —1.51 and +. 10 The natural motion of
the machine is therefore of the form o

- Cy e 1514 Oy e 1%,
The second factor indicates instability; the motion due to it increases
instead of subsides and reaches 2.78 times its original value in 10
seconds. We thus find the second result: The machine, when con-
strained, becomes unstable at a higher speed than when free—it is
to this extent & more dangerous machine.

We ghall now return to the case of high speed and compute the
effect of certain gusts on the constrained machine for comparison

with the effect of the same gusts on the free machine. The general

solutions are

i

u=—.0426 C, 3% (, e““‘+Iu,
Z’Dﬂa e“’*“}‘;— .147 G, e—'“‘+I
—.148 1.006
C= —~1.006 L,,— 0429”1"
Au=—(.128 D+ .598) , +.162 Dw,, .
Aw= —(3.95 D+ .598) w, —.557 D,

Case 1. Head-on gust—mild. u,=J (l—e-*”).

I,=—J (1+3.20 e™%), L_,o=- —4.20 J,

1,=.622 Je—%, =.622 J.
%=4.19 Je—“‘ ~J (1+3. 19 e“-")«’

w= —.62 Je—-“‘+.62 Je—%,
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The machine takes up the gﬁmt as before, of course. There is no
osoillation. There is practically no acceleration in elther % or W,
.The path in space is

z=dJ (4167 —3.1 6~ %)—dJ.

The totel rise 18 only —J. In every way the motion in this case is
eagier in the constramed than in the free aeroplane.

Case 2. Up gust—mild. w,= J(1 e—2),

Iy=—.186 Je—%, : o \

L= —J(1—1.079 e—), _{w: 5558 I,
u=.186 Je 1% — 186 Je %,

w= —.052 Je"'”" 027 Je“'“‘ J(1—-1. 079 e ).

The motion is again exceedmgly moderate in 8.11 respects.

' Case 8. Rotary gusts. These can have no effect except upon -

the constraining moment F.
Case 4. Head-on gust—moderate. w,=J(1—e™%).

I,=—J(1+.1895 e=t). - I,=—.1895 J,
I =.2246 Je—¢, Ipo=.2246 J.
u=.002 Je—2%% 11,187 Je~ 10— J(14.189 e=%),
w= —~.05 Je— ¥ — 174 Je—1%+ 224 Je—*

. dufdt= —.008 Je—3%%— 180 Je 1“‘+1 89 Je—t,
dw/dt=.197 Je“”‘“+ 027 Je— 1% — 224 Je—+
2=1.16 Je—1%— 22 Je—t— .94 J '

The motion is again decidedly moderate.
Case 5. Up gusi—moderate. w,=J(L—e™*).

I,= —.0653 Je—t, L= —.0853 J, ‘
L= —J(1—1.350 e—t), - L,=.350 d.
w=.0144 Je—3%% 4+ 0507 ¢~ Bt .0853 Je—¢,
we= —.343 Je—29% — 007 ¢~ 1% — J(1-1. 350 e*).
dw/dt= 41.35 Je—“3 1.35 Je—t. i

The motion is easy exce £t for thé aceeleration in w, which has a
maximum when ¢=.46 and is then equal to about —.62 J. If ‘the
gust should have an intensity of 10 foot-seoondé thé maximum
acceleration would be about g/5. ,

Casg 6. Head—ongzwt—sharp fu,1=-J(1 —e— “) D
I==J(1+ .007956"5), I,,= —1.008J, “
I,= —.5275 Je—%, Too= —.5275 J.
u=— 029Je—m+1 037Je"‘5‘ J(1+ 008 e—%).
w=. 680 Je*% — 152 Je= 1% 528 Je~ ’

-dw/dt= —2 67 Je“’“+ 02 Je— 15‘+2 64 'Je"‘“ .
g=—-.173 Je"“"+Ja a4, 103 Je—%—.93 J.
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The motion, including acceleration, is moderate.

Case 7. Up gust—sharp. w,=J(1—e—%).
I,=.153 Je—*, _ I,=.153J,
L=—J(1+3.628¢%), I,=—4.628 J,
Wom — 197 Je~3% 4 044 Jo—ri% 4 153 Je—¥,
w=4.634 Je—2%% — 006 Je—15% —J(1+43.628 ¢—¥).
dwojdt=—18.2 Je—?5118.2 Je=%,
ze=-1.18 Jo—3% 4 04 JeT A% 1.73 Je—% 4+ 41 J_Jt.

The acceleraﬁ(')ﬁ‘dw/dt hes a maximum when t=5/11 when it is
1.44 J. This is somewhat serious if J is 10 foot-seconds.

We may now calculate roughly the moment F necessary to pfo-'

duce the constraint. .
F=—.174(w+w,) +150¢,. -

The last term is efféctive only when ‘thé machine encounters rotat-
ingairandwi]lbene‘glectec}here.“; R

Casp 1. FeilJ(e—®—g—%). - . -
Case 2. F=J(.009 o=55% 4 005 6= — 014 6=),
Case 4. F=J(.009 ¢~3% 4,030 ¢=-1%— 039 e~?).
Casm 5. F=J(.06 e~ 4 0012 e~% — 0612 ¢~¥). *
Casm 8. F—=J(—.119 e=3%+ 0266 ¢~ +.0024 e—*).
Case 7. Fm 811 J(—e= 3% L o),

‘ . SUMMARY.

I have indicated the general method, based on the theory of small
oscillations, whereby the equations of motion of a stable aeroplane,
whether free or constrained to fly without pitch, whether in steady
or gusty air, may be completely integrated in such form that, after
a certain amount of prehminary calculation, the effects upon the
motion of & large number of different gusts may be determined with
relative ease. far as I am aware, no actual method of integration
nor an titative results of such an integration has praviously been

ublished with the exception of the descriptive popular lecture of
ala.zebrook cited above. I have carried through the actual deter-
mination of the effects of gusts in the following cases:

Head-on gusts rising from 0 to J feet per second with various de-
grees of ness. | - o - :

Up gust of the same type. . )

Rotary gusts of the saime type. O

Rear gusts and down gusts’ are included by merely changing the
gign of 5-”8 For convenience, it has been assumed that the machine
is 1n still a.ir'excggt for the gustiness; as a matter of fact gusts are
usually superposed upon a general steady wind of other than zero

ey~ -
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average velocity; but the conditions of flight in still air and in steady
air are nearly identical, the only difference being that in-the equa-
fions of motion the resistance derivatives are calculated from the
relative wind; whereas Uis the actual velocity over the ground: -
" It has been found that a stable machine, with controls untouched,
ing into a head gust ¢f various sharpness and of total intensity
J foot-second will swoop.up, with some oscillation of no seridus char-
acter, to a new level about 3.5 J feet higher than its previous level.
The constrained machine will rise without oscillation to a-new level
nly: J feet, or a trifle less, higher than before. , The path in a ver-
tical plane 1s indicated’in the diagrams drawn for me by Mr. T. H.
Huff. The accellerations-arising in the motion are not serious for
eithér the machine or the pilot. ~ It‘has been found further that a
rotary gust may héve considerable.effect—though in the absence of
dats as to the intensity and regularity of rotation In the air no definite
results can be- formulated:. - Furthermore we -find that up gusts
operate chiefly in ]an.n'(.‘gtl the machine, whether free or constrained,
with the gust. The path'in space is gnren in the diagram.” There is
here in the case of sharp gusts a considerable momentary acceleration
in. the vertical which may reach & magnitude of about 1.5 J foot-
seconds.? - This would not seriously stress the machine, which is
designed to stend accelerations of 6 dg to 8 ‘¢ in maneuvering, but
owing-to -its ‘sudden and unexpected appearance this acceleration
Plli,ght incommode the pilot—it is indeed the familiar phenomenon of a
‘bump.”’ - s .- .
! Tt follows, therefore, that thé introduction of :the constraint,
whether by gyroscopic or other means, serves only to eliminate the
natural osci]%gtrion in pitch and to diminish, in the case of the head
or rear gusts -only, the final -change of level. -As a rear gust of 20
foot-seconds is found to drop the uncontrolled machine by more than
80 feet in 15 seconds, flight at low altitudes is-more dangerous in the
unconstrained than in the constrained machine. However, the
elapsed time is sufficiently great to enable the pilot to check the dip
by a suitable- movement of his elevator. -~~~ - .

To offset any advantages derived-from the constraint, we find that
this particular machine, when constrained, becomes unstable at a
speed between 47 and 51 mile-hours, whereas the free machine remains
stable down to"a speed between 45 and 47 mile-hours.

MASSACHUSETTS INSTITUTE OF TEOHNOLOGY, -
: Boston, Mass., October 7, 1915.
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